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Abstract--Drop distribution and deposition in horizontal gas-liquid annular flow is described by a 
diffusion model, which views the concentration field as the result of dispersion from a distribution of 
sources. Drops originating from a wall source are considered to diffuse in a field of homogeneous 
turbulence, while simultaneously being swept downward by the gravitational field. Deposition is assumed 
to be controlled by two mechanisms operating in parallel, and boundary conditions are derived which 
correctly satisfy conservation of mass. This analysis for an instantaneous source is shown to be equivalent 
to considering diffusion in a coordinate system moving with the settling velocity of the particles. The 
results are found to be useful for understanding droplet distribution and deposition. 
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1. I N T R O D U C T I O N  

For gas-liquid flow in enclosed ducts an annular pattern exists at high gas velocities. Part of the 
liquid moves along the wall as a liquid layer and part as droplets entrained in the gas. There is 
an exchange of liquid between the liquid layer and the core characterized by the rate of atomization 
per unit area, RA, and the rate of deposition per unit area, R. 

For annular flows in a horizontal pipe the influence of the gravitational field causes a 
stratification of the drops in the gas and an asymmetric distribution of the liquid flowing along 
the wall. This paper is concerned with determining flow parameters which control the degree of 
stratification and the spatial variation of the rate of deposition. 

The system considered is a two-dimensional rectangular channel, because of its simplicity 
compared to a circular pipe. Liquid of uniform height is considered to be flowing along the top 
and bottom wails. Because of gravitational effects, droplet concentrations, the rate of atomization 
and the height of the liquid layer are larger on the bottom wall. 

Research on this system is limited to the laboratory studies by Namie & Ueda (1972) and McCoy 
& Hanratty (1975). Namie & Ueda used a diffusion model to describe droplet transfer but did not 
include the effects of gravitational settling. Anderson & Russell (1970) and James et al. (1980) 
produced models that are based on the analysis of deterministic trajectories of the droplets. McCoy 
& Hanratty (1975) argued that deposition is controlled by gravitational settling at low gas 
velocities. The calculations presented in this paper incorporate these ideas of previous researchers 
but use a different theoretical framework. 

The Lagrangian analysis of particle diffusion recently presented by Binder & Hanratty (1991) 
for vertical gas-liquid annular flows is extended by including the effects of gravitational settling. 
The calculations are restricted to drops that have stopping distances larger than the viscous wall 
layer. Non-homogeneities in the turbulence close to the wall are, therefore, ignored and the problem 
is simplified by assuming a uniform velocity. 

The concentration field is pictured as resulting from a distribution of sources. The central 
problem is, then, to describe the behavior of one instantaneous source of drops whose magnitude 
is specified. Because of limited understanding of the entrainment process it is assumed that the 
turbulence properties of the drops entering the field are proportional to the turbulence properties 
of the fully entrained droplets, and that the droplets have the same streamwise velocity as the gas. 
The influence of turbulence on the spread of particles downstream of the source is described by 
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Figure 1. Idealized picture of line-source diffusion. 

a diffusion equation with a diffusion coefficient that varies with time. A method for describing the 
boundary conditions at the surfaces developed by Lee et al. (1989) is used. The influence of the 
gravitational field on the drop motion is assumed to be independent of the turbulence. It causes 
an average deterministic velocity, V,,, in a direction perpendicular to the wall. This velocity is a 
function of the amount of time particles from a source have been in the field and reaches a free-fall 
value only after a sufficiently long time. 

Deposition is considered to occur by turbulence and gravitational settling acting in parallel. The 
flux of drops to a wall due to turbulence is described as a free flight from a position beyond the 
outer edge of the viscous wall layer to the wall, defined as vCs, where C, is the concentration at 
the wall. Velocity v, is represented as the product of the magnitude of the normal velocity 
fluctuations of the drops and the fraction, f, of the particles at the outer edge of the viscous wall 
layer that are caused to move toward the wall by turbulence: 

The turbulence is pictured to bring the drops to their free-flight location by turbulent diffusion so 
that at the wall 

-_E KvC 
Pay S* PI 

2. FORMULATION OF THE DIFFUSION EQUATION FOR A POINT SOURCE 

The situation considered is shown in figure 1. An instantaneous line source of drops enters the 
field at y = y’ and at time t = t’. Typically the source will be located at the lower (v’ = 0) or upper 
boundary (y’ = H); however, in some situations the sources could be located elsewhere. The drops 
emitted by an instantaneous source are entrained into the flow and eventually deposit out. 
Deposition at the top boundary will be due to turbulent diffusion; deposition on the lower 
boundary will be due’to a combination of diffusion and gravitational settling. 

Following arguments presented in previous papers (Binder & Hanratty 1991; Hanratty 1956, 
1958; Hanratty & Flint 1958; Eckleman & Hanratty 1972), the time-dependent equation describing 
turbulent diffusion from an instantaneous source in a homogeneous field is given by 

wy, t) 
- + v,<t - t/q = Ep(f - t’) a’;;y ‘)+ Qs(y 1 y')&t 1 t’), 

at 

where Q is the source strength, with units of mass per unit area, and 6 is the Dirac delta 
function. Since variations in the velocity profile are ignored, time can be converted to distance 
downstream with the transformation dx = vrt, where I’, is the mean velocity of the particles in 
the x-direction. 

The particle diffusivity is characterized by the mean-square of the turbulent velocity fluctuations, 
(2) and a Lagrangian time scale, rp. As shown in Taylor’s (1921) analysis of diffusion from an 
infinitesimal source, the diffusivity is a function of the dispersion time or the time the drop has 
been in the flow field. For small times the diffusivity increases linearly; as time increases it 
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approaches an asymptotic limit. This behavior is represented by the following equation, which 
assumes the Lagrangian correlation is given by an exponential function (Hanratty & Flint 1958): 

e p ( t - - t ' ) = V ~ Z p { 1 - - e x p [  (t--t')]~.Zp _l) [4] 

The time-dependent velocity, V~, is obtained by solving the equation of motion of  the particle 
to obtain an average trajectory. The only forces considered are those due to gravity and particle 
drag, and it is assumed that the turbulence does not, on average, affect the drag coefficient. The 
equation for Vi is, therefore, given as 

d Vi 3 pf C D 

dt 4 pp dp 

with 

I V -  UI V , - g  (1 - Pr~, 
PP / 

[5] 

Vi(t = t') = V;. [6] 

For small particle Reynolds numbers (Rep < 1), 

24 
CD = - -  ; [7] 

Rep 

and for intermediate particle Reynolds numbers (1 < Rep < 1000), 

18.5 
CO -- Re3/5 , [8] 

where Rep is based on I V -  U[. 
Not  enough information is available about the manner in which the droplets enter the gas flow. 

For simplicity it is assumed that they are initially entrained in the turbulence with a velocity 
proportional to the intensity of  the turbulent velocity fluctuations, so that Vy = ~ (v2) ~/2. A 
reasonable assumption for the initial x-component of  the velocity is V~, = S'Ux,  where Ux is the 
bulk vdlocity of  the fluid. For simplicity the initial slip ratio, S', is taken as unity; however, it would 
be of  interest to explore other values. 

The ability of  the particle to respond to the fluid turbulence is represented by the reciprocal time 
constant, fl, defined as 

fl = ~ IV - UI. [9] ,tap pp 

For the Stokes flow regime, 

18~f 
fl = d2 pp, [10] 

where/zf is the dynamic viscosity of the fluid, p is the density and d is diameter. This analysis is 
restricted to situations where the diffusion length scale characterizing particle motion, (Vy~) ~/2 Zp, 
is less than the channel height and larger than the viscous wall region. McCoy & Hanratty (1975) 
pointed out that this latter restriction is satisfied if 1/f l+= (uE/vrf l )> 20; or is the kinematic 
viscosity of  the fluid. The consequence of  neglecting effects associated with non-homogeneities of  
the velocity field in [3] and [5] has not been evaluated. 

3. F O R M U L A T I O N  OF THE B O U N D A R Y  C O N D I T I O N S  

From [1] and [2] and the discussion presented by Lee et al. (1989), the following boundary 
conditions are used to solve [3] for the behavior of  a line source at the bottom wall: 

ep(t -- t') dC(y  = O, t) Oy = f ( t  - t') (~) l /2C(y = O, t) [11] 

at the lower boundary, y = 0, at time t; and 

OC(y = H, t) f 2  
ay = f ( t  - t') %/-~ (~)~/2C(y = H, t) [12] t') 
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at the upper boundary, y = H, at time t. The fraction of  the drops moving towards the bottom 
wall is assumed to have the form 

,[ ,,3, f ( t - t ' ) = ~  1 - e x p  zp / J  

where zp is the Lagrangian time scale. It is to be noted that [11] and [12] represent an equality 
between turbulent diffusion and free flight to the boundary. The gravitational settling term does 
not appear in these boundary conditions because it is already included in [3]. 

The rationale behind this equation is t ha t f i s  a multiplier of the term representing the magnitude 
of  the turbulent velocity fluctuations that accounts for the previous history of  the drops. Drops 
that have been in the field for a large time are just as likely to have a plus or minus sign, so one-half 
will be moving toward the wall (in the negative direction). Consequently, one can expect f = 1/2 
for large (t - t'). Drops which are entering the field from the bottom wall are moving in the positive 
direction, so t h a t f  = 0 for (t - t ') ~ 0. The function f ( t  - t ') represented by [13], approaches 1/2 
asymptotically with the same dependency as the diffusivity, given in [4]. The choice of  this function 
is made for mathematical convenience, although it is physically reasonable since it would be 
expected that f ( t )  would not equal 1/2 until the dispersing droplets have obtained the haphazard 
motion characteristic of diffusion at large times. 

The fraction of  the drops moving toward the top wall is taken to be 1/2 in [12] because they 
have been in the field for a long time. Equations similar to [1 l] and [12] can be used as boundary 
conditions for line sources at the top wall. 

A justification for boundary conditions [11] and [12] is obtained by integrating [3], with respect 
to time from t = t '  to t = oo and with respect to channel height from y = 0 to y = H. A mass 
balance for drops in the flow field resulting from one instantaneous source is obtained: 

f0 ;0 d t V y ( t  - t ' ) [ C ( y  = H,  t)  - C ( y  = O, t ) ] -  dtep(t  - t ' )  

F o C ( y = H ' t )  d C ( y = O ' t ) ] = I ~ d t ~ f d y Q t ~ ( y l y ' ) f ( t l t '  ). [14] 
x [_ c~y ay jo 

In [14] the condition has been used that the concentration of drops at time (t - t ') = 0 is zero. In 
addition, the concentration of  drops at large t is zero because all of  them have deposited out. The 
term on the right-hand side of [14] is the total mass emitted by one source. This must be equal 
to the total amount  of mass deposited. For deposition rates of R0 at y = 0 and of RH at y = H 
the following equation is obtained: 

f0 f f0 dt  d y Q f ( y  l y ' ) f ( t  I t ') = dt[R0(t - t ' )  + R n ( t  - t')]. [15] 
0 

The particle flux at a boundary is given as the sum of contributions due to turbulent velocity 
fluctuations and to gravitational settling: 

where 

R, = R~ + R s, [16] 

R~ = v C ( y  = O, t),  [17] 

R ~  = v C ( y  = H,  t)  [18] 

and v is defined by [1]. The contribution due to settling is 

R s = Vy(t - t ' ) C ( y  = O, t)  [19] 

at the bottom wall and 

R s = Vy(t - t ' ) C ( y  = H,  t)  [20] 

at the top wall. If [15] is substituted into [14] it follows from [16]-{20] that the derivatives appearing 
in the second term on the left-hand side of  [14] need to be defined by [11] and [12] to satisfy 



DROP DEPOSITION AND DISTRIBUTION IN ANNULAR FLOW 807 

conservation of mass. The term representing a flux of particles to the top wall due to the 
deterministic velocity Vy, i.e. R s,  would usually be negative since particles reaching the top wall 
would have reached their free-fall velocity and be settling away from the wall. Consequently, RH 
can be positive or negative depending on whether R~ + R s is greater or less than zero. The physical 
picture that emerges from this analysis is that a point source of particles is emitted into a field of 
homogeneous turbulence and begins to diffuse. The spread of the particles is governed by 
time-dependent turbulent diffusion with a diffusivity given by [4]. A settling velocity imposed by 
the gravitational field, that serves to sweep the particles downward, operates in parallel. 

This interpretation for the boundary conditions and a rationale for [3] evolve in a direct way 
if the diffusion equation is formulated in a coordinate system moving with the velocity Vy(t - t'). 
The following transformation of the space coordinate y is used: 

q(y, t) = y + ~ Vy dt. [21] 

Equation [3] then takes the same form as the diffusion equation for a field without a gravitational 
field: 

OC O~C 
-~- = ep(t - t') ~ + SOURCE; [22] 

and the boundary conditions clearly do not need terms involving the settling velocity if the diffusion 
and settling processes are assumed independent of one another. 

The preceding analysis presents a framework from which to interpret the deposition measured 
for the horizontal transport of a particulate. Deposition constants (k, ko, kn)  can be defined as 

R = kCB, [23a] 

R0 =/Co CB [23b] 

and 

Rn = kH CB, [23c] 

where CB is the bulk concentration given by 

l f o ~  CB = ~ C(y )  dy. [24] 

In many physical situations involving horizontal flows the majority of the transported mass will 
deposit on the lower boundary. Since turbulent diffusion and gravitational settling are parallel 
processes, k can be considered to be the sum of deposition constants for turbulence and settling 
defined as follows: 

k = k r + k'. [25] 

4. SCALING RELATIONS FOR ANNULAR FLOW 

Following Binder & Hanratty (1991) the problem is made dimensionless in the remainder of the 
paper by the following scaling: 

- -  h~2W 2 V~ Cu ,  y tu ,  ep 2 i/2 ~,-yJ 
- -  ( o y )  --* , V y ~  ---~" C - - * - - ,  [261 Y ~ H '  t ~ - - H - ' e P ' - * u , H '  u ,  u ,  ' RA 

where u ,  is the friction velocity of the flow. The fluid diffusivity, et, the integral time scale, ~t, and 
the turbulence intensity are related to the friction velocity in the following way (Vames & Hanratty 
1988): 

er = 0.037 [27] 
u , H  

ZrU, = 0.046 [28] 
H 
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and 

(u~) 1/2 = 0.9u,  [291 

near the boundaries. Thus, the dimensionless drop diffusivity, drop time scale and drop turbulent 
intensity are proportional to the ratios of  the drop values to the fluid values. The dimensionless 
settling velocity is scaled with the friction velocity. 

The dimensionless form of differential equation [3] is then 

de(y ,  t) , de(y ,  t) O2C(y, t) 
- -  + V y ( t  - t ) ~  = ep ( t  - t ' )  Ot t~y 2 

¢ -6 (y ly ' ) f ( t l t ' ) ,  [301 

where 6(y  [Y') and 8(t It ')  in [3] have, respectively, been made dimensionless by multiplying by 
H and by H / u . .  Noting that Pf'~ PP for liquid droplets in a gas, the equation describing the 
deterministic part of the drop motion is written as 

dVy _ 2 1 [311 
dt - y V y - F r r '  

where 

3pfH [32] 
Y = 4ppdp cD 

and the Froude number, Fr, is defined as 

u~, 
Fr = - - .  [33] 

gH 

In the context of  [5] and [31], Fr represents the relative importance of  drag and gravitational forces 
on the deterministic velocity. 

Streamwise slip between the fluid and the drop velocity is assumed to be small compared to the 
fluid friction velocity. Additionally, the drop settling velocity is assumed equal to or less than the 
friction velocity. This assumption regarding the settling velocity is verified from solutions of (31) 
for drop sizes and gas velocities typical of  annular flow. For situations with small slip and settling 
velocities, the theory of  Reeks (1977) and experiments by Young & Hanratty (1991) indicate that 
the drop diffusivity is approximately equal to the fluid diffusivity. Lee et al. (1989) showed that 
the ratio of  the root-mean-square of  the velocity fluctuations of  the particle and the fluid can be 
approximated as 

i/2 (Vy) { fl'rf "~,/2 [34] 
\ 0  (u,) ' 

where fl is the reciprocal time constant of  the drop. 
For typical conditions in annular flows, the Sauter mean droplet diameter is characterized by 

flTf --- 0.01 to 0.1. From [34] it is seen that (~)l/2/u, ~- 0.12 to 0.35, so that droplets are not following 
the turbulence very well. Furthermore, since ep = ef it follows that 

T~ ___ 0.7 +//Tr. [35] 
"Cf f lTf  

As a consequence, ~p/~f ~ 8 to 71 for annular flows. The droplet turbulence time scale is much larger 
than the fluid time scale. This means that it could take a long time to reach a fully developed state 
and that f ( t -  t'), defined by [13], could increase slowly from its zero value (at t = t') with 
increasing time. 

The above scaling indicates that two dimensionless groups are controlling, fl~r and Fr. From [18] 
the turbulent deposition rate to the bottom wall is 

R~ = (~),/2 /2 fCs, [36] 
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where Cs is the droplet concentration at the surface. Therefore, 

ko r (v~) '/2 Csf. 
- -  o c  - -  [ 3 7 ]  

U ,  U ,  C B " 

If  Cs/CB is approximately constant and f ~  1/2, then it would be expected that 

k--~v ~ (v2)1/2 =f(flzf). [38] 
U ,  U ,  

This estimate could be valid for conditions under which turbulent deposition dominates and for 
which the behavior is similar to vertical gas-liquid annular flow. [See, for example, the paper by 
Binder & Hanratty (1991)]. 

The contribution of  settling to deposition on the bottom wall is given as 

R s = -- Vy(y = 0)Cs, [391 

where Vy (y = 0) is the deterministic velocity of the particles at the bottom boundary. Therefore, 

k s VT Vy(y = O) Cs.  
u-- = u ,  VT CB' [401 

VT is the terminal free-fall velocity of the particle. For Stokesian particles 

0.046u, 
Frflzf = - - ,  [41] 

VT 
so that 

k s 1 V (y  = O) Cs 
- -  o c  - -  - -  . [ 4 2 ]  

u ,  Frflzf V v C B 

In the limit where gravitational settling is controlling the particles are highly stratified so Vy/VT 
and Cs/CB can be quite different from unity. Since the shapes of  the concentration profiles seem 
to depend primarily on flzf, an attractive assumption is that 

k°S Frfl~f = f(fl'~f). [43] 
U ,  

5. S O L U T I O N  M E T H O D  

The behavior of  a single source is obtained by solving [30] using boundary conditions [11] and 
[12] made dimensionless by using u ,  and H. An explicit finite difference method is used. The 
diffusion term is represented by a central difference approximation. A forward difference 
approximation is used for the convective term. The spatial grid is divided into steps hy and the time 
step is denoted by hr. The time, t, is given by 

t = jh  t, 1 <~j<~J. [44] 

The channel position, y, is given by 

y = ( i - 1 ) h y ,  l ~ < i ~ < l + l .  [45] 

The concentration at time step j + 1 is calculated from the concentration at step j by the following 
equation: 

Ci, j+ l = (1 - 2ep, jr + Vy,jq)Ci. j + (ee,/r -- Vy./q)Ci+ l , /+ ev,/rC~_ i.j + SOURCE. [46] 

Here r and q are defined as 

h, h, 
r=, , -5;  q = - -  [47] 

hy hy " 
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This has the effect of distributing the source evenly over the first grid point of size hy. Sources at 
other locations are represented in an analogous way. The boundary conditions are differenced and 
are used for writing the difference equations at i = 1 and i = 1 4- 1. Velocity I/,.j is calculated at 
each time step by a fourth-order Runge-Kutta  method. The accuracy of the solution was tested 
by increasing the number of grid points and choosing q such that the solutions were stable and 
unchanging. Values of m = 100 and q = 0.01 were found to be sufficient. 

Once solutions for a single source are obtained, a particular concentration field at a given time 
is calculated by summing over many sources in the following manner: 

C(y, t) = C(y, t - SOURCE,] dt ' .  [49] 

This can be used to obtain C(y, x)  by substituting t = x /V , ,  where Vx is the average velocity of 
the drop in the x-direction. 

If the source were of infinitesimal thickness the integral [49] diverges because of a singularity at 
t = t' (Hanratty 1956). Actually, the source has a finite size, at least equal to the droplet diameter. 
This has the effect of giving the initial mean-square displacement of  the particle a finite value. The 
computational procedure outlined in [44]-[47] is such that the source thickness equals by. For the 
calculations in this paper hy/H = 0.01. For the range of conditions considered the source thickness, 
in terms of wall units, is obtained as 10 < hyu, /v f< 40. 

6. BEHAVIOR OF A S IN G LE SOURCE 

The behavior of one instantaneous source, placed on the bottom wall, is interpreted by 
calculating concentration profiles and the fraction of mass depositing downstream from the source. 
Results are presented for Fr values from 1 to 100 and droplet inertial parameters from 0.001 to 
10.0. The gas phase Re does not enter into the problem directly, other than in converting from 
time to distance travelled in the streamwise direction. The calculations shown here are for 
Re = 100,000. The fractions deposited on the lower boundary due to the turbulence or gravitational 
settling are given separately. The fraction deposited on the top wall due to turbulence is shown, 
if it occurs. 

Figures 2 and 3 give concentration profiles and the fraction deposited for values of  Fr = 10 and 
for flZLV(= 1.0, 0.01) that are characteristic of large and small drops in annular flows. The profiles 
shown in figure 2(b) are similar to what was calculated for vertical flows by Binder & Hanratty 
(1991). At (t - t ' ) ~  0 (or x / H - ~  0) the droplets are primarily moving away from the wall so that 
f ( t  - t ') = 0 in boundary condition [11]. As a consequence, OC/Oy ~- 0 and the maximum occurs 
at y = 0. For  larger (t - t ') or (x/H),  where droplets entrained in the turbulence are moving toward 
the wall, the maximum in the profile moves away from the wall and the positive concentration 
gradient close to the wall corresponds to the deposition of  droplets by turbulence. The concen- 
tration profiles in figure 2(a) are for small fl~r, for which zp/zr= 71 and (v~)l/2/u.O.12. From [13] 
it is seen that f ( t  - t ') will be approximately zero for a much larger range of times than for the 
case considered in figure 2(b). As a consequence, the maxima in the droplet concentration profiles 
are very close to the wall. 

Calculations of the fractions deposited, shown in figure 3, are consistent with the concentration 
profiles. Figure 3(b) shows for t i T L E  = 1.0 (the small drops) that almost all of  the deposition is 
associated with turbulent transport. It is also noted that at x / H  > 50 the droplets spread over the 
whole channel cross section and that some deposition occurs on the top wall. This deposition leads 
to the buildup of a liquid layer on the top wall which is eventually thick enough that atomization 
can occur. Figure 3(a) shows just the opposite behavior for the large drops (fl~f = 0.01). Almost 
all of  the deposition occurs by gravitational settling and no deposition occurs by turbulence. 

Figures 4 and 5 show the effect of increasing Fr or decreasing the effect of the gravitational field. 
A comparison of figures 4(b), 5(b) and 2(b), 3(b) indicates that the increase in Fr for flzf = 1.0 
reduces the gravitational deposition to zero but does not have a dramatic effect on the 
concentration profiles. It is noted that for the cases considered in figure 5 deposition occurs on the 
top wall. 
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The conclusion is that the characteristics of the concentration profiles are largely dependent on 
the value of/~r. An increase in/~'~f o r  in Fr increases the relative importance of turbulent deposition 
over gravitational settling. For large enough Fr the gravitational settling becomes unimportant so 
deposition is mainly dependent on /~ t .  

Figure 6 gives the total fraction of mass deposited from a single source; the effect of the drop 
size parameter, /3~f, is clearly indicated. Large droplets settle out rapidly because of gravity. 
Conversely, small drops deposit out quickly due to strong interactions with the gas phase 
turbulence. Drops with an intermediate size (/3rf= 0.01 for this case) exhibit neither limiting 
behavior and have longer lifetimes in the gas phase. In annular flows a distribution of droplet sizes 
is produced by the atomization of the film. The results on the droplet lifetime, shown in figure 5, 
indicate that the droplet size distribution in the flow field will differ from the distribution at the 
source. This aging of the droplet distribution is discussed further in the next section. 

The results on the behavior of single sources indicate that for certain initial conditions a very 
long test section is needed to obtain fully developed horizontal annular flow, where the deposition 
rate equals the atomization rate and the droplet concentration profile is no longer changing 
downstream. This is demonstrated in figure 7, where droplet concentration profiles are presented 
for different value of x/H. These were calculated by summing over many single sources, located 
on the bottom wall, as outlined in section 5. These results are for an Fr (=50), Re (= 100,000) 
and droplet size (/~zr= 0.01) representative of air-water annular flows studied in the laboratory. 
They show that test sections in excess of 600 channel heights may be needed to obtain fully 
developed annular flow. This calculation disregards the presence of any sources on the top 
wall. In many situations an atomizing film will also be present on the top wall. Because of the time 
to build up this film, an even longer test section would be needed to reach a fully developed 
condition. 

7. CONCENTRATION PROFILES FOR FULLY DEVELOPED ANNULAR FLOW 

One of the most useful results obtained in the analysis is the prediction of the dimensionless 
deposition constant, k/u., as a function of//Zr and Fr for fully developed gas-liquid annular flows. 
Before deposition constants can be calculated the distribution of liquid film flow between the top 
and bottom wall must be considered. In the experiments of McCoy & Hanratty (1975) and of 
Namie & Ueda (1972) annular flow was obtained by introducing a liquid film on the bottom wall. 
This film atomized into droplets; these, in turn, deposited on both walls. A liquid film on the top 
wall forms and increases in flow rate until it is large enough to atomize. As a consequence, sources 
on both the bottom and top walls need to be considered to calculate a fully developed droplet 
concentration profile. 

As indicated in the previous section the distance required in these experiments for an atomizing 
liquid film to form on the top wall may be quite large. McCoy & Hanratty (1975) removed and 
separately measured the film flow rate for the top and bottom wall at the end of a developing section 
equal to 260 channel heights in length. They found the liquid film flow rate on the top wall to be 
an order of magnitude less than on the bottom wall. This is consistent with the findings in the 
previous section on the fraction of liquid depositing on the top wall. In the experiments of Namie 
& Ueda the films at the top and bottom walls were withdrawn 250 channel heights downstream 
of the entrance section. These liquids were combined and then measured. 

The effect of gravity on horizontal annular flow can be characterized by considering the 
relative strengths of sources on the top and bottom walls for fully developed flow. The source 
strength at the top wall, as compared to the source strength at the bottom wall, can be calculated 
from a mass balance. For fully developed flow the deposition and atomization rates at each wall 
must be equal: 

R,l. = R. [50] 

and 

RAo = Ro [51] 
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Figure 10. Fully developed concentration profiles in hori- 
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Figure 1 I. Deposition constants for sources on the bottom 
wall: (a) k0 ° represents deposition to the bottom wall; (b) k ° 

represents deposition to the top wall. 

Denote Fx0 as the fraction of  mass entrained at the top wall that deposits on the bottom wall and 
For as the fraction of  mass entrained at the bottom wall that deposits on the top. Equations [50] 
and [51] can be rewritten as 

R H  = ( 1  - -  F~o)RH + FoHRo [521 

and 

Ro = FHoRH + (1 - Fon)Ro. [53] 

By taking the ratio [52]/[53] the following result is obtained: 

Rn 
RH (1 - F~°) Ro + F°" 
- -  = [54]  

RH 1 R° F . o ~ o + ( - F o x )  

This equation has one physically realistic root, 

RH FOR 
= e.---;  [55]  

Thus, calculations of  the fraction deposited for sources placed on the top and bottom wall give 
the relative rates of  deposition for a fully developed flow. 

Figure 8 gives the results of  a calculation of  RI~/Ro vs Fr for various fl~f for x/H = 1000. It is 
noted that stratification increases with decreasing Fr or increasing fl~r. Figure 9 plots Rn/Ro vs the 
product of  Fr and flzf which, from [40], is proportional to the reciprocal of  Vr/u, .  It is noted that 
the results for different fl~f approximately collapse on a single curve. 

Figure 9 may be interpreted as a flow regime map for horizontal annular flow. For Fr fl~f < (0.5 
to 0.7), deposition of  droplets on the top wall is extremely small. This would seem to correspond 
to the stratified-annular flow defined by Williams (1990). For (0.5 to 0 .7 )<  Fr tiff < (7 to 9) an 
asymmetric annular flow exists in which the film is unequally distributed on the walls and the 
droplets are stratified. For Fr fl~r > (7 to 9) gravitational settling is relatively unimportant and the 
liquid is distributed symmetrically. 
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Fully developed droplet concentration profiles, calculated for flzr= 0.01 and 1.0 are shown 
in figure 10. These correspond to values of 0.1 < F r f l , f <  100, or 0.00046< Vr/u.<0.32. 
The curves for Fr fl,f = 0.1 and 0.5 represent a stratified-annular flow; the curves for Fr flzf = 1.0 
and 5.0, an asymmetric annular flow; the curves for Fr f l , r= 10.0 and 100, a symmetric annular 
flow. 

An understanding of these results can be obtained by considering the distributions downstream 
of a line source shown in figures 2(a) and 4(a). The curves in figure 10 for Fr f l , f=  0.1 and 1.0 
are obtained by summing contributions from all the sources upstream of the location representing 
that profile. For example, the curves for x/H = 10, 20, 30 in figures 2(a) and 4(a) would represent 
contributions from line sources at locations x/H = 10, 20, 30 upstream. The maximum at 
the wall in the fully developed concentration profiles for Frf lzf=0.1 and 1.0 reflects the 
large contributions of the line sources to the concentration profiles close to the wall, particularly 
from those at very small x/H. The positive concentration gradients in the line source profiles 
right at the wall, associated with turbulent deposition, are not seen after averaging over all 
sources. 

The large gradients at y/H = l, shown in figure 10, reflect the existence of sources of 
drops at the top wall. For Frf lzr=0.1 and 0.5 gravitational effects are large enough for 
negligible atomization to occur at the top wall. For large Fr flzr the strengths of the sources 
on the top wall are large enough that the behaviors of the concentration profiles are the same at 
both walls. 

8. DEPOSITION RATES FOR FULLY DEVELOPED A N N U L A R  FLOWS 

Figures 11 and 12 present deposition constants for cases in which sources exist only at the bottom 
or at the top wall. These results may be thought of as representing a (fictitious) situation in which 
liquid reaching the top (or bottom) wall is removed and returned to the bottom (or top) wall. 
Constants characterizing the deposition rates to the bottom and top walls are defined as 

R0 [56a] 

and 

Re 
kn = C-~s' [56b] 

where superscript i signifies where the sources are located and C~ is the bulk concentration 
calculated for sources on the ith wall. At Fr large enough that Fr fl~r > 20, it is seen, in agreement 
with [38], that k~/u, depends only on flzf. At low Fr, figures 11 (a) and 12(a) show that k~o/u, varies 
approximately as Fr-~, in agreement with [43]. Furthermore, it should be noted that the labels on 
the ordinate in figure 1 l(b) are much smaller than those in figure 11. This reflects the much lower 
rates of deposition on the top wall than on the bottom wall. 

The results presented in figures 8, 11 and 12 can be used to calculate deposition constants for 
fully developed annular flow. The bulk concentration for sources at both the top and bottom walls 
is calculated as 

CB = Cg + C °. [57] 

These concentrations are related to the deposition constants in figures 11 and 12 as follows: 

Ro 
C ° = ko o + k o 

[581 

and 

RH 
C~=k~+k ~" [591 
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Figure 13. Deposition constants for fully developed annular 
flow, i.e. for sources on the top and bottom walls: (a) k0 
represents deposition to the bottom wall; (b) k .  represents 

deposition to the top wall. 

A fully developed deposition constant for the bottom wall, k0 = Ro/CB, is calculated as follows by 
using [57]-[59] to calculate CB: 

1 
k0 = 1 Rn 1 [60] 

- - +  
k ° + k  ° e,0 k0" + k." 

The deposition, constant for the upper wall, kn = RB/CB, is related to k 0 as follows: 

k ,  Rn k [61] 
= R---o 0. 

Figure 13 presents deposition constants for fully developed flow. It is noted that for Fr flzf > 20 
the deposition constants for the top and bottom walls, depend only on flTr and are approximately 
equal (see [38]). For Fr/YTr< 20, the settling velocity becomes important and the deposition 
constants for the top wall become significantly less than those for the bottom wall. At Fr flZr < 0.2 
gravitational settling dominates, deposition to the top wall is negligible and the deposition constant 
varies with (Fr flzf)-i for fixed/Yzf (see [43]). 

Equation [37] suggests for large Fr/~zf that k should vary approximately with (v~) ~/2. Therefore, 
the deposition constant representing the total deposition, 

k = k0 + kz, [62] 

is plotted in figure 14 as k/(v~) I/: vs Fr flZr. The values of (v~) ~/2 are obtained from [34]. It is noted 
that in this type of plot the influence of/Yzf becomes small. 

9. COMPARISON WITH LABORATORY MEASUREMENTS 

The conditions for the experiments of McCoy & Hanratty (1975) and Namie & Ueda (1972) are 
summarized in table 1. Drop sizes, obtained from a correlation by Azzopardi (1985) for vertical 
annular flow, are used because reliable measurements for horizontal flows are not available over 
a wide enough range of conditions. It is believed that this correlation would be satisfactory if 
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Figure 14. Comparison of calculated total deposition rates with measurements, k = ko + kn. 

gravity is not influencing the atomization process. Differences in the measurements of k / u , ,  which 
had been puzzling, can now be interpreted. 

The experiments of  Namie & Ueda (1972) were carried out in a smaller channel and for larger 
Ft. Both studies were carried out for a range of  Fr flzf that would indicate that gravitational settling 
was having a strong effect on the concentration profiles. This is illustrated in figure 14, where the 
data of  McCoy & Hanrat ty 0975) and of Namie & Ueda (1972) have been plotted. 

Reasonably good agreement is found between the calculations and the data. However, it should 
be noted that the data were obtained for somewhat different conditions than were used in the 
calculations. In the experiments, the film was removed from the wall and deposition rates were 
measured downstream of an approximately fully developed condition. It is, therefore, of  interest 
to calculate deposition constants downstream of  a location where the source is turned off. 
Experiments in vertical annular flow (Cousins & Hewitt 1968) indicate that deposition constants 
decrease downstream of the film removal section. Binder & Hanrat ty (1991) showed that this could 
be due to a change in the shape of  the concentration profile. In horizontal annular flow the effect 
of  the deposition length is more complicated. 

Figure 15 shows calculated deposition constants for the bottom and top walls at various 
locations downstream, after turning off the sources. For  this calculation the sources were located 
only at the bottom wall. The deposition constants are plotted vs flzf in order to exhibit the differing 
behavior of small and large droplets. Figure 16 presents the concentration profiles, after turning 
off the source, for two different flzf. Figures 15 and 16 were calculated for Fr = 10. The two values 
of  flzf = (0.01 and 1.0), used in figure 15, exhibit the limiting behavior of very large and very small 
particles. 

For  large flzf (small particles) deposition constants show the same results as is found for vertical 
flow; ie. they decrease with increasing distance downstream. The deposition rate is controlled by 
turbulent diffusion and is affected by changes in the concentration profiles, shown in figure 16(b). 
The shape of  the concentration profile and, therefore, the deposition rate remains the same at the 
top wall. However, the bulk concentration decreases, so the deposition constant for the top 
boundary increases. 

Table I. Conditions of the experiments by McCoy & 
Hanratty (1975) by Namie & Ueda (1972) 

Fr d32(#m) #~f k / u ,  

Namie & Ueda (1972), H = O.Ol m 
33.4 86 0.011 0.056 
50.4 66 0.016 0.046 
98.4 42 0.027 0.039 

McCoy & Hanratty (1975), H = 0.0254m 

5.67 130 0.019 0.30 
11.5 81 0.034 O. 12 
19.0 58 0.052 0.13 
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Figure 15. Deposition constants in horizontal annular flow 
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Figure 16. Concentration profiles downstream of  a film 
removal station for Fr = 10: (a) ~ t  = 0.01; (b) ~zr= 1.0. 

For small tier (large particles) there is no deposition on the top wall and the deposition constant 
to the lower boundary increases downstream of the film removal section. Here the deposition is 
controlled by gravitational settling; this is evidenced by the small concentration gradient at y = 0, 
shown in figure 16(a). The increase in the deposition constant is due to an increase in the average 
settling velocity of the droplets to the terminal value. This occurs downstream of the film removal 
section because no new sources of droplets are entering the channel. 

It is, therefore, found that the measured deposition constants may increase or decrease 
downstream of a suckoff unit, depending on the controlling process for the deposition. Calculations 
for the conditions characterizing the experiments indicate that the deposition constant would stay 
approximately constant for the mean drop size. In actual annular flow there is a distribution of 
droplet sizes. At the pre~nt time incomplete information is available on the atomization process, 
so a more complete analysis of the experiments cannot b¢ done. It is tentatively concluded that 

. . . . . . . .  i . . . . . . . .  t . . . . . . . .  i . . . . . . . .  i . . . . . . . .  

~ 8  dvldd Fully Developed 
- - -  dvlcld ,Sourco 
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1 0 0 0  f ~ . j , o  o y/H - .67 

j , , , , r =  . .~.~,= o a y / H - l . 0  

o . . . .  . . . . . . . . . .  . . . . . . .  

1 0 - 4  1 0 - 3  1 0 - 2  10-1 1 0 0  101 

P ~  

Figure 17. Comparison of  droplet size distribution in horizontal annular flow with the size distribution 
originating from the source. 
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the deposition constants measured by McCoy & Hanratty 0975) and by Namie & Ueda (1972) 
are approximately equal to the fully developed values. 

10. DROP SIZES 

Despite the fact that little experimental data are available, the present analysis can be used to 
provide some insight into phenomena affecting the droplet size distribution in annular flow. In 
order to discuss these phenomena a drop size distribution function of the source is assumed. A 
convenient choice is the Rossin-Rammler function, defined as 

1 - v = exp - [631 

where 1 - v is the volume fraction of the droplets emitted by the source with diameter greater than 
d. Azzopardi (1978) fitted measurements of droplet size in vertical annular flow to [63]. 
Examination of these data suggests reasonable choices for A and dR. For all flow conditions A 
(~  1.8) was approximately constant. By plotting dR vs the Sauter mean diameter, given by the 
correlation of Azzopardi (1985), a linear relation was determined. By dividing the droplet 
distribution into N increments of size Ad the droplet concentration is calculated from 

C(y,  t) = ~ Cg(y, t) Ad, 
i l l  i 

[64] 

where Cg is the solution of the mass balance equation for the ith size. 
Figure 17 shows droplet distribution functions vs flzf for sources on the lower wall. The figure 

compares the distribution in the source, given by [64], to the distribution for all of the droplets 
in the gas under fully developed conditions. It is clear that the fully developed droplet distribution 
narrows, with the peak tending to the droplet with the longest lifetime or the smallest deposition 
constant. The droplet size distributions at different y / H  indicate, as expected, that the larger 
particles remain in the lower portion of the pipe. 

1 1. CONCLUDING REMARKS 

A Lagrangian approach has been explored to describe the distribution and deposition of drops 
in horizontal turbulent flows. The principal idea is to describe the concentration field as resulting 
from distributions of approximately infinitesimal sources. The problem is simplified by assuming 
that the turbulence is homogeneous and that the mean velocity field of the fluid is uniform. This, 
then, limits the application of the results to particles characterized by large enough 1/fl + (> 20) 
that their stopping distances are greater than the thickness of the viscous wall region. 

Point source behavior is described by Taylor's theory so that the influence of the time dependency 
of the diffusion process is taken into account. This, in effect, causes diffusion coefficients close to 
the wall to be smaller since drops in this region have, on average, been in the field for shorter 
times. 

The influence of gravity on the drop distributions is calculated by assuming that the gravitational 
field acts independently of the turbulence to give a deterministic average trajectory for the particles. 
A weakness of this calculation is that not enough is known about how the particles enter the field. 
In order to implement the analysis it is assumed that, on average, the initial velocity in the 
y-direction is proportional to the root-mean square of the turbulent velocity fluctuations of fully 
entrained drops and that the initial velocity in the x-direction is the same as the gas. 

Drops are assumed to be permanently removed from the field when they impact on a boundary. 
For molecular diffusion, a completely absorbing boundary, such as this, would dictate that the 
concentration be zero at the boundary. However, as pointed out by Lee et al. (1989), the large scale 
characterizing the random motion of drops requires a finite concentration which is defined by [11] 
and [12] for a single source. The actual concentration at the boundary, which is calculated by 
summing the contributions of all the sources, depends on the strength of the sources. 
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The analytical framework that has been developed defines the dimensionless groups that control 
the degree of the stratification of particles and the rate of deposition in horizontal gas-liquid 
annular flows. They are the ratio of the time scale of the fluid to the time scale of the particles, 
tiff, and the Fr (=u2,/gH). The product of the two groups decreases with increasing VT/U, and 
it is found that stratification increases with decreasing values of this group. For small Fr t iff  the 
deposition rate is controlled by gravitational settling; for large Fr tiff it is controlled by the fluid 
turbulence. 

Finally, it should be pointed out that, because of the approximations made in this analysis, exact 
quantitative agreement with measurements cannot be made. Of particular importance would be the 
availability of precise results about how droplets enter the field. Further calculations should explore 
the sensitivity of the results to the choice of V~ and V'x, the effects of ignoring the influences of 
flow non-homogeneities, and errors associated with turbulence effects on CD when solving [5]. 
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